
Quantum hypercomputation based on the dynamical algebra 

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 12539

(http://iopscience.iop.org/0305-4470/39/40/018)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/40
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 12539–12558 doi:10.1088/0305-4470/39/40/018

Quantum hypercomputation based on the dynamical
algebra su(1, 1)

A Sicard, J Ospina and M Vélez

Group of Logic and Computation, EAFIT University, AA 3030 Medellı́n, Colombia

E-mail: asicard@eafit.edu.co, judoan@epm.net.co and mvelez@eafit.edu.co

Received 13 February 2006, in final form 6 August 2006
Published 19 September 2006
Online at stacks.iop.org/JPhysA/39/12539

Abstract
An adaptation of Kieu’s hypercomputational quantum algorithm (KHQA) is
presented. The method that was used was to replace the Weyl–Heisenberg
algebra by other dynamical algebra of low dimension that admits infinite-
dimensional irreducible representations with naturally defined generalized
coherent states. We have selected the Lie algebra su(1, 1), because this algebra
possesses the necessary characteristics to realize the hypercomputation and also
because such algebra has been identified as the dynamical algebra associated
with many relatively simple quantum systems. In addition to an algebraic
adaptation of KHQA over the algebra su(1, 1), we presented an adaptation
of KHQA over some concrete physical referents: the infinite square well, the
infinite cylindrical well, the perturbed infinite cylindrical well, the Pöschl–
Teller potentials, the Holstein–Primakoff system and the Laguerre oscillator.
We conclude that it is possible to have many physical systems within condensed
matter and quantum optics in which it is possible to consider an implementation
of KHQA.

PACS number: 03.67.Lx

1. Introduction

Hypercomputers compute functions or numbers, or more generally solve problems or carry
out tasks, that cannot be computed or solved by a Turing machine (TM) [1, 2]. Starting
from what seems to be the first published model of hypercomputation, which is called
Turing’s oracle machine [3]; the formulations of models and algorithms of hypercomputation
have been applied a wide spectrum of underlying theories [1, 4, 5]. It is precisely
due to the existence of Turing’s oracle machines that J Copeland and D Proudfoot introduced
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the term ‘hypercomputation’ in 1999 [6] to replace wrong expressions such as ‘super-
Turing computation’, ‘computing beyond Turing’s limit’, ‘breaking the Turing barrier’ and
similar.

Recently, Tien D Kieu has proposed a quantum algorithm to solve the TM incomputable1

problem named Hilbert’s tenth problem, using as physical referent the well-known simple
harmonic oscillator (SHO), which by effect of the second quantization, it is a realization of
dynamical algebra Weyl–Heisenberg denoted by gW−H [8–13]. From the algebraic analysis
of Kieu’s hypercomputational quantum algorithm (KHQA), we have identified the underlying
properties of the gW−H algebra which are necessary (but not sufficient) to guarantee KHQA
works. Such properties are that the dynamical algebra admits infinite-dimensional irreducible
representations with naturally associated coherent states.

The importance of KHQA in the field of hypercomputation, at the same tenor as
the importance of hypercomputation within the domain of computer science, cannot be
underestimated. This algorithm is a plausible candidate for a practical implementation of
the hypercomputation, maybe within the scope of quantum optics. The adaptation of KHQA
to new physical referents different than the harmonic oscillator opens the possibility of analyse
news viable alternatives for its practical implementation beyond quantum optics, maybe using
quasi-particles of condensed matter systems.

In this work, we present an algebraic adaptation of KHQA, that is to say, we present a
hypercomputation model à la Kieu, based on the selection of a dynamical algebra which is
different than the gW−H algebra. We have selected the Lie algebra su(1, 1), because this algebra
possesses the necessary characteristics to realize the hypercomputation and also because such
algebra has been identified as the dynamical algebra associated with many relatively simple
quantum systems.

More concretely, the su(1, 1) algebra possesses four kinds of infinite-dimensional unitary
irreducible representations (UIR): the positive discrete series, the negative discrete series, the
principal series and the complementary series [14]. In this work, we use only the positive
discrete series. From the other side, the su(1, 1) algebra admits different kinds of coherent
states such as Barut–Girardello, Perelomov, nonlinear and minimum uncertain [15, 16]. In
addition to all of these, the su(1, 1) algebra admits different kinds of realizations. Within the
field of quantum optics, we have realizations in systems with one, two and four photon modes
[15, 16], or with systems such as the density-dependent Holstein–Primakoff [15]. Within the
domain of condensed matter, we have realizations in the following quantum potentials: infinite
square well, the Pöschl–Teller potentials [17] and Calogero–Sutherland model [16]. Other
realizations from the su(1, 1) algebra arise from the mathematical physics in relation with the
recursive properties of the special functions, namely Laguerre oscillators [18–20], Legendre
and Chebyshev oscillators [19], Meixner Oscillators [14, 21] and so on.

The present paper is realized in the following way. In section 2 we introduce KHQA
in such a way that the algebraic issues have been empathized and we make explicit the
hypercomputational characteristics of the gW−H algebra. In section 3, based on the analysis of
such algebraic characteristics, we show the general structure and the mathematical properties
of our adaptation of KHQA using the su(1, 1) algebra. In section 4 we note that the infinite
cylindrical well and a modified cylindrical well also admit a realization of the su(1, 1) algebra.
Moreover, based on the adaptation of KHQA that we have realized using the infinite square
well [22, 23], we show new adaptations of KHQA for some of the physical referents previously
listed. Finally, we present some conclusions.

1 We follow S B Cooper and P Odifreddi, and we adopt the terminology Turing’s ‘computable’ in place of Kleene’s
‘recursive’ (see footnote 1 in [7]).
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2. Kieu’s hypercomputational quantum algorithm

Based on the SHO and its associated dynamical algebra gW−H, Kieu has proposed a
possible algorithm for the solution of Hilbert’s tenth problem by the use of three strategies:
(i) codification of the instance of the Hilbert’s tenth problem to solve, (ii) the utilization of a
non-standard version of quantum computation, and (iii) the establishment of a halting criterion.
The strategy (i) has a background in the occupation-number operator associated with the gW−H

algebra. The strategy (ii) is based on the adiabatic quantum computation [24, 25] applied to
unbounded Hamiltonians, that is to say, this strategy constitutes an application of the quantum
adiabatic theorem for the case of unbounded operators [26, 27]. The adiabatic initialization
is obtained with the aid of the coherent states and the ladder operators which are associated
with the dynamical algebra gW−H. The strategy (iii) demands a property to the initial state of
the adiabatic evolution. Such property is based on the probability distribution associated with
the coherent states corresponding to the gW−H algebra. We now present in detail, every one
of the strategies previously enunciated, in such way that the possible algebraic generalizations
can arise easily.

2.1. Mathematical background

The mathematical background underlying KHQA is shown by equations (1) and corresponds
to the mathematical formalism of the SHO within the formulation of the second quantization.
At (1a) we introduce the Fock occupation-number states denoted by FSHO, where N =
{0, 1, 2, . . .} is the set of non-negative integers. At (1b) the annihilation and creation operators
a and a† are introduced. The commutation relations between the ladder operators are presented
in (1c). At (1d) the spectral equation for the SHO is shown in terms of the Hamiltonian H SHO

and of the energy levels ESHO
n . At (1e) the Hamiltonian H SHO is given in terms of the ladder

operators. At (1f ) is presented the definition of the occupation-number operator NSHO whose
eigenvalues are denoted by n and which will be crucial for what follows. Equation (1g) gives
the definition and the explicit form of the coherent states denoted by |α〉SHO. Finally (1h)
shows the Poisson form of the probability density for the random variable n corresponding to
the coherent states (1g).

FSHO = {|n〉 | n ∈ N}, (1a)

a|0〉 = 0, a|n〉 = √
n|n − 1〉, a†|n〉 =

√
n + 1|n + 1〉, (1b)

[a, a†] = 11 (1c)

H SHO|n〉 = ESHO
n |n〉, (1d)

H SHO = h̄ωSHO(a†a + 1/2), (1e)

NSHO = a†a, NSHO|n〉 = n|n〉, (1f )

a|α〉SHO = α|α〉SHO

= e− |α|2
2

∞∑
n=0

αn

√
n!

|n〉, where α ∈ C, (1g)

P SHO
n (α) = e−|α|2 |α|2n

n!
. (1h)
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Figure 1. Kieu’s codification.

2.2. First strategy: Hilbert’s tenth problem and its codification

A Diophantine equation is an equation of the form

D(x1, . . . , xk) = 0, (2)

where D is a polynomial with integer coefficients. In 1900, David Hilbert presented his famous
list of 23 problems. From this list we extract problem number 10. In present terminology,
Hilbert’s tenth problem may be paraphrased as

Given a Diophantine equation with any number of unknowns: To devise a process
according to which it can be determined by a finite number of operations whether the
equation has non-negative integer solutions.

From the concluding results obtained by Matiyasevich, Davis, Robinson and Putnam, we
know actually that, in the general case, this problem is algorithmically insolvable, or more
precisely, it is TM incomputable [28]. Actually, the possible hypercomputability of Kieu’s
algorithm is due to the fact that this algorithm solves Hilbert’s tenth problem.

With the mathematical background that was presented at (1), Kieu proposes the
codification of Hilbert’s tenth problem which is presented in figure 1. This figure illustrates
that a Diophantine equation of the kind (2) is codified on a Hamiltonian denoted by HD which
results from the substitution of every unknown in (2) by the occupation-number operator
defined in (1f ). In this way, the problem to determine if (2) has solutions within the non-
negative integers is equivalent to the problem to determine if the energy associated with the
fundamental state denoted by |g〉, of the Hamiltonian HD is zero.

2.3. Second strategy: quantum adiabatic computation

Due to the codification showed in figure 1, it is necessary to use a strategy of quantum
computation which is different from the standard quantum computation (based on sequences
of unitary quantum logic gates that process qubits) [29]. Using the words of Kieu, we present
the strategy of quantum computation in the following form [12, p 7]:

In general, it is much more difficult to construct a specific state for a quantum
mechanical system than to control the physical process (that is, to create a
corresponding Hamiltonian) to which the system is subject. One systematic method
to obtain the ground state of a Hamiltonian is to exploit the quantum adiabatic theorem
to reach the desired state through some adiabatic evolution which starts from a readily
constructible ground state of some other Hamiltonian. This is the idea of quantum
adiabatic computation (QAC) [24] . . .

In QAC, we encode the solution of our problem to the ground state of some
specific Hamiltonian. As it is easier to implement controlled dynamical processes
than to obtain the ground state, we start the computation with the system prepared in
a different but readily obtainable ground state of some other Hamiltonian. This initial
Hamiltonian is then slowly extrapolated into the Hamiltonian whose ground state is
the desired one. The adiabatic theorem of quantum mechanics (QAT) [26] stipulates



Quantum hypercomputation based on the dynamical algebra su(1, 1) 12543

that if the extrapolation rate is sufficiently slow compared to some intrinsic scale,
the initial state will evolve into the desired ground state with a high probability . . .

Measurements then take place finally on the system in order to identify the ground
state, from which the solution to our problem emerges . . .

Now, to carry out a QAC for a given Diophantine equation (2), we prepare our
quantum-mechanical system in the readily constructible initial ground state

|gI 〉SHO =
k⊗

i=1

|αi〉SHO, (3)

of a universal (that is, independent of the given Diophantine equation) initial
Hamiltonian HI , with some complex numbers α’s,

H SHO
I =

k∑
i=1

(
a
†
i − α∗

i

)
(ai − αi). (4)

This is just the Hamiltonian for shifted simple harmonic oscillators whose ground
state is the well-known coherent state in quantum optics. We then subject the system
to the time-dependent Hamiltonian H SHO

A , which linearly extrapolates the initial
Hamiltonian HI to the final Hamiltonian HD in a time interval T,

H SHO
A (t) =

(
1 − t

T

)
H SHO

I +
t

T
H SHO

D . (5)

2.4. The algorithm

Based on the two mentioned strategies and the strategy that will be presented in the following
section, given a Diophantine equation with k unknowns of type (2), Kieu provides the following
quantum algorithm to decide whether this equation has a non-negative integer solution or not
[10, 12].

(i) Construct a physical process in which a system initially starts with a direct product of k
coherent states

|ψ(0)〉 = |gI 〉SHO,

and in which the system is subject to a time-dependent Hamiltonian H SHO
A (t) of (5) over

the time interval [0, T ], for some time T.
(ii) Measure through the time-dependent Schrödinger equation

i∂t |ψ(t)〉 = H SHO
A (t)|ψ(t)〉, for t ∈ [0, T ]

the maximum probability to find the system in a particular occupation-number state at the
chosen time T,

P(T ) = max
|{n}〉

|〈ψ(T ) | {n}〉|2

= |〈ψ(T ) | {n}0〉|2,
where |{n}〉 = ⊗k

i=1 |ni〉, and |{n}0〉 is the maximum-probability number state with a
particular k-tuple

(
n0

1, . . . , n
0
k

)
.

(iii) If P(T ) � 1/2, increase T and repeat all the steps above.
(iv) If

P(T ) > 1/2 (6)

then |{n}0〉 is the ground state of H SHO
D (assuming no degeneracy) and we can terminate
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the algorithm and deduce a conclusion from the fact that H SHO
D |{n}0〉 = 0 iff equation (2)

has a non-negative integer solution.

2.5. Third strategy: the halting criterion

One of the most common misunderstandings about KHQA is linked to the halting criterion
of the algorithm. Some authors claim that the QAT only establishes the existence of a time
of execution of the algorithm which is finite but unknown and then there is not a verifiable
halting criterion of the algorithm. From the very early versions of the algorithm, Kieu has
been alert to this situation and he has proposed the following halting criterion [12, p 9–11]:

Nevertheless, it is important to note that QAT is not constructive, as with most
theorems involving limiting processes. It only tells us that for ‘sufficiently large’
T the system is ‘mostly’ in the instantaneous eigenstate. But the theorem tells us
nothing quantitatively about the degrees of being ‘sufficiently large’ or ‘mostly’ . . .

In other words, QAT can only guarantee that the ground state is achievable in a
finite time interval but cannot specify what that interval should be. That is, it cannot
by itself give us any indication when the ground state has been obtained so that the
algorithm can then be terminated at that point. For that, we need another criterion . . .

The crucial step of any quantum adiabatic algorithm is the identification of the
ground state of the final Hamiltonian, HD . In our case we do not in advance know in
general how long is sufficiently long (the theorem offers no direct help here); all we
can confidently know is that for each Diophantine equation and each set of αi’s there
is a finite evolution time after which the adiabaticity condition is satisfied. We thus
have to find another criterion to identify the ground state.

The identification criterion we have found can be stated as: the ground state of
H SHO

D is the Fock state |{n}0〉 measurably obtained with a probability of more than
1/2 after the evolution for some time T of the initial ground state |gI 〉SHO according
to the Hamiltonian (5):

|{n}0〉 is the ground state of H SHO
D if |〈ψ(T ) | {n}0〉|2 > 1/2, for some T ,

provided the initial ground state |gI 〉SHO of H SHO
I does not have any dominant

component in the occupation-number eigenstates |{n}〉 of H SHO
D ,

|SHO〈gI |{n}〉|2 � 1/2, ∀ {n}; (7)

and provided that for 0 < t < T ,

〈e(t)|H SHO
D − H SHO

I |g(t)〉 �= 0, (8)

where |g(t)〉 and |e(t)〉 are, respectively, the instantaneous ground state and the first
excited state of H SHO

A at the time t.2

2.6. Crucial properties of the gW−H algebra for KHQA

According to (1), the dynamical algebra realized by SHO is the Lie algebra gW−H, whose
generators are the operators a, a† and 11. The gW−H algebra admits a infinite-dimensional UIR,

2 Criterion (8) was added recently by Kieu [12, 30] to correct the finite-dimensional counter-examples pointed out
by Smith [31]. On the other hand, there was an open problem in relation to infinite-dimensional case. In a personal
communication, Kieu told us that he has found a mathematical proof that halting criterion (6) is a good identification
for the ground state in this case [32].
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which is established by the action of its generators over the space FSHO and which is given
by (1b). From this representation, the occupation-number operator NSHO is obtained whose
spectrum coincides with the non-negative integers N as is shown by (1f ). This spectrum is
precisely the searching space of the solution, associated with every one of the variables of (2)
and justifies the strategy of codification which is shown in figure 1.

From the other side, the adiabatic initialization for KHQA, which is represented by (3) and
(4), comes from the gW−H algebra. The initial state |gI 〉SHO is the direct product of k coherent
states of the form (1g), and the initial Hamiltonian denoted by H SHO

I is constructed starting
from the ladder operators a† and a of the gW−H algebra. Besides this, the identification of the
ground state of H SHO

D that assumes the role of halting criterion for the algorithm according to
(6) is supported by condition (7), which is satisfied by the probability density P SHO

n of (1h).
In concrete, the chosen of the coherent state with the form (3) as the initial ground state entails
condition (7), since for any α �= 0, and ∀ n > 0

|〈α | n〉|2 = P SHO
n (α) < 1/2.

3. Hypercomputational quantum algorithm based on the algebra su(1, 1)

From the algebraic point of view, the peculiarities of the algebra gW−H, which are required by
KHQA, start from the fact that this algebra admits an infinite-dimensional UIR that operates
over the Fock space and its corresponding coherent states. Based on such infinite-dimensional
UIR is possible to establish the needed ladder operators that let the construction of a number
operator and the associated coherent states, the basic algebraic ingredients of KHQA.

Due to the fact that the gW−H algebra is not the only dynamical algebra that satisfies the
needed algebraic conditions, the problem then arises of the adaptation of KHQA to other
dynamical algebras and then to other physical systems.

We present in this section the adaptation of KHQA to the case of the su(1, 1) algebra.
Such algebra is chosen because this algebra is the dynamical algebra associated with many
well-known physical systems.

The algebra su(1, 1) is defined by the commutation relations

[K0,K1] = iK2, [K0,K2] = −iK1, [K1,K2] = −iK0,

or by the commutation relations

[K0,K±] = ±K±, [K+,K−] = −2K0, where K± ≡ (K1 ± iK2). (9)

In contrast with the gW−H algebra, the algebra su(1, 1) admits different kinds of coherent
states in addition to various kinds of representations. Here we use the named positive discrete
representation, which is defined as [15, 16]

K−|k, n〉 =
√

n(2k + n − 1)|k, n − 1〉,
K+|k, n〉 =

√
(n + 1)(2k + n)|k, n + 1〉, (10)

K0|k, n〉 = (n + k)|k, n〉,
where |k, n〉(n ∈ N) is the normalized basis and k ∈ {

1
2 , 1, 3

2 , 2, . . .
}

is the Bargmann index
labeling the UIR3.

We introduce the number operator Nsu(1,1) by

Nsu(1,1) = K0 − k, Nsu(1,1)|k, n〉 = n|k, n〉, (11)

3 Following Antoine et al, we recall that k ∈ { 1
2 , 1, 3

2 , 2, . . .
}

for the discrete series stricto senso UIRs of su(1, 1),
and k ∈ [1/2, +∞) for the extension to the universal covering of the group SU(1, 1) [17]. Whatever the fact, we will
speak about discrete series UIRs for both cases.
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and the well-known coherent states of su(1, 1) are the denominated Barut–Girardello coherent
states (BGCS). The BGCS are defined as the eigenstates of the lowering operator K−

K−|k, α〉BG = α|k, α〉BG, (12)

and these can be expressed as [15]

|k, α〉BG =
√

|α|2k−1

I2k−1(2|α|)
∞∑

n=0

αn

√
n!�(n + 2k)

|k, n〉, (13)

where Iν(x) is a modified Bessel function of the first kind.
All this is well known. Now, we introduce a generalizations of equations (9)–(13),

which we will use for that which follows. Assuming the existence of a quantum system S,
whose dynamical algebra is su(1, 1), equations (14) gives the adaptation of equations (1)
for the case of su(1, 1). Equation (14a) defines the Fock space of quantum states, which is
denoted by FS corresponding to a quantum system denoted by S. Equation (14b) presents
the commutation relations that defines the su(1, 1) algebra, where the generators KS

+ and KS
−

correspond respectively to the creation and destruction operators of su(1, 1). Equation (14c)
shows the action of the infinite-dimensional UIR of su(1, 1) over the space FS, with
characteristic function f S, which is assumed to be a quadratic function of n. Expression
(14d) shows the equation of the energy spectrum for the quantum system, and (14e) gives
the factorized form of the Hamiltonian H S in terms of the ladder operators. Equation (14f )
defines the number operator associated with the system S and its corresponding action over
the space FS. Equation (14g) is a definition of a nonlinear coherent state denoted by |z〉, which
is a generalization of the more standard linear coherent states of the Barut–Girardello and
Klauder–Perelomov [15, 33] kinds; and (14h) presents the form of such nonlinear coherent
states (see the appendix). Equation (14i) shows the probability density for the random variable
n, which is associated with the generalized coherent states (14h).

FS = {|n〉 | n ∈ N}, (14a)[
KS

−,KS
+

] = KS
3 ,

[
KS

−,KS
3

] = 2KS
−,

[
KS

+ ,KS
3

] = −2KS
+ , (14b)

KS
−|0〉 = 0, KS

−|n〉 =
√

f S(n)|n − 1〉,
KS

+ |n〉 =
√

f S(n + 1)|n + 1〉, KS
3 |n〉 = (f S(n + 1) − f S(n))|n〉 = gS(n)|n〉,

(14c)

H S|n〉 = ES
n |n〉, (14d)

H S = h̄ω
(
KS

+KS
−
)
, with KS

+KS
−|n〉 = f S(n)|n〉, (14e)

NS = (f S(H S))−1 = (
gS

(
KS

3

))−1
, NS|n〉 = n|n〉, (14f )

hS(NS)KS
−|z〉S = z|z〉S, z ∈ C, (14g)

|z〉S =
( ∞∑

m=0

|z|2m( ∏m−1
j=0 hS(j)

)2
(f S(m)!)

)−1/2 ∞∑
n=0

zn( ∏n−1
j=0 hS(j)

)(√
f S(n)!

) , (14h)

P S
n (z) =

( ∞∑
m=0

|z|2m( ∏m−1
j=0 hS(j)

)2
(f S(m)!)

)−1 |z|2n( ∏n−1
j=0 hS(j)

)2
(f S(n)!)

. (14i)

Starting from equations (14), the annunciated adaptation of KHQA for the case of the
su(1, 1) algebra is completely direct. In the strategy of codification, which was represented
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by figure 1, it is necessary to replace the Hamiltonian H SHO
D with a new Hamiltonian denoted

by H S
D which is constructed with the number operators defined at (14f ), by means of

H S
D = (

D
(
NS

1 , . . . , NS
k

))2
. (15)

The adiabatic initialization is obtained from the coherent states (14h) and from (14g), and is
given by

|gI 〉S =
k⊗

i=1

|zi〉S, (16)

H S
I =

k∑
i=1

(
KS

+i
hS(NS) − z∗

i

) (
hS(NS)KS

−i
− zi

)
. (17)

From all this, we obtain the Hamiltonian denoted by H S
A, which is the generator of the adiabatic

evolution and which is of the form

H S
A(t) =

(
1 − t

T

)
H S

I +
t

T
H S

D. (18)

Finally, to satisfy the halting criterion (6), we chose a value for the parameter z ∈ C,
which according to (14i) satisfies the condition in (7), it is to say we chose a value of z such
that

P S
n (z) < 1/2.

All that is the abstract generalization or extension of Kieu’s original hypercomputational
quantum algorithm. In the following section, we will present some concrete physical referents
on which to realize the implementation of the abstract algorithm previously presented.

4. Adaptation of KHQA over some concrete physical referents

In this section, some concrete quantum systems are presented as possible physical referents
on which to try to implement the adaptation of KHQA with the su(1, 1) algebra, which
was presented in the past section. The mathematical adaptation expressed by equations (14)
depends on the particular forms of the characteristic functions f S and hS associated with the
physical system S. Then for every one of the considered physical systems, we establish that
the corresponding dynamical algebra is precisely su(1, 1) and we determine the particular
forms of f S and hS. The physical systems that are considered here are the infinite square
well, the Pöschl–Teller potentials, the infinite cylindrical well, a perturbed cylindrical well, the
density-dependent Holstein–Primakoff system of quantum optics and the Laguerre oscillator.
Other systems of quantum optics such as two-mode realization, amplitude-squared realization
and four-mode system admit also infinite-dimensional representations but such representations
are reducible and with such kind of representations it is more difficult to adapt KHQA.

4.1. The infinite square well

The adaptation of the KHQA for the case of the infinite square well (ISW) was realized by
the present authors within a previous work [22, 23]. In the present work, we again establish
that the ISW satisfies the mathematical structure given by (14), for particular forms of f ISW

and hISW from which it is possible to construct the constitutive elements of the basic algebraic
anatomy of the KHQA.
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For a particle with mass m that is trapped inside the infinite square well 0 � x � πl, the
Fock space associated FISW, the Hamiltonian operator H ISW, the eigenvalue equation and the
boundary conditions are [17]

FISW = {|n〉 | n ∈ N}, H ISW = i2 h̄2

2m

d2

dx2
− h̄2

2ml2
, (19)

H ISWψ ISW = EISWψ ISW, (20)

ψ(x) = 0, x � πl and x � 0. (21)

Replacing (19) on (20) together with the boundary conditions (21), we obtain

ψ ISW
n (x) =

√
2

πl
sin(x + 1)

x

l
≡ 〈x | n〉,

EISW
n = h̄ωISWeISW

n , where ωISW = h̄2

2ml2
and eISW

n = n(n + 2), n ∈ N,

(22)

and where the action of H ISW over the space FISW is given by

H ISW|n〉 = EISW
n |n〉.

Due to the spectral structure of the ISW, the dynamical algebra associated with it is
the Lie algebra su(1, 1) [17] whose generators denoted by K ISW

+ ,K ISW
− and K ISW

3 satisfy
the commutation relations of (14b). Based on (22), the algebra su(1, 1) admits an infinite-
dimensional UIR over the space FISW, which is given by

K ISW
− |0〉 = 0,

K ISW
− |n〉 =

√
eISW
n |n〉 =

√
n(n + 2)|n − 1〉,

K ISW
+ |n〉 =

√
eISW
n+1 |n〉 =

√
(n + 1)(n + 3)|n + 1〉,

K ISW
3 |n〉 = (

eISW
n+1 − eISW

n

) |n〉 = (2n + 3)|n〉.
Based on this representation of the algebra su(1, 1), the Hamiltonian (19) is rewritten as

H ISW = h̄ω
(
K ISW

+ K ISW
−

)
, H ISW|n〉 = EISW

n |n〉,
and a new number operator N ISW is given by

N ISW = (1/2)
(
K ISW

3 − 3
)
, N ISW|n〉 = n|n〉.

Due to the associated dynamical algebra, the BGCS |z〉ISW, z ∈ C, for the ISW are given
by [34]

K ISW
− |z〉ISW = z|z〉ISW, where |z〉ISW = |z|√

I2(2 |z|)
∞∑

n=0

zn

√
n!(n + 2)!

|n〉, (23)

where Iv(x) is the modified Bessel function of the first kind. The corresponding probability
density for the random variable n that results from (23) is

P ISW
n (z) = |z|2

I2(2|z|)
|z|2n

n!(2 + n)!
.

We have established then that the ISW satisfies the algebraic structure of (14) where the
characteristic functions are of the forms

f ISW(n) = eISW
n = n(n + 2), hISW(N ISW) = 11,
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and we can in consequence to rewrite in terms of the ISW, all the elements of the KHQA,
which are given by equations (15)–(18) and to obtain in this way, an adaptation of the KHQA
for the ISW, on where the halting criterion (6) is satisfied according to condition (7) with every
one value of z ∈ Z that verifies that

P ISW
0 (z) = |z|2

2I2(2|z|) < 1/2,

given that P ISW
n (z) � P ISW

0 (z),∀ n.

4.2. The infinite cylindrical well and the perturbed cylindrical well

With the aim to adapt the KHQA over the infinite cylindrical well (ICW) or over a perturbed
cylindrical well (PCW), initially we establish that these physical referents have as dynamical
algebra just the su(1, 1) algebra. We follow the work that was realized by Antoine et al [17],
in this way that we obtain the particular forms of the functions f ICW/PCW and hICW/PCW that
are required.

In concrete, for a particle with mass m which is trapped inside the infinite cylindrical well
of radius R, the associated Fock space denoted by FICW and the corresponding Hamiltonian
operator H ICW are given by

FISW = {|n〉 | n ∈ N}, H ICW = − h̄2

2m
∇2 + U ICW, (24)

where U ICW is a constant that will be obtained posteriorly and the bi-dimensional Laplacian
operator is written on cylindrical coordinates. The spectral equation for Hamiltonian H ICW is

H ICW�ICW = EICW�ICW. (25)

Now the substitution of (24) on (25) gives the following partial differential equation whose
solution determines the spectrum of H ICW

− h̄2

2m
∇2�ICW + U ICW�ICW = EICW�ICW. (26)

Using cylindrical coordinates and axial symmetry, (26) is reduced to

∂2

∂r
�ICW(r) +

1

r

∂

∂r
�ICW(r) +

2m

h̄2 (EICW − U ICW)�ICW(r) = 0. (27)

The condition of trapping for the particle within the interior of the ICW is introduced using
the boundary condition

�ICW(R) = 0. (28)

The solution of (27) with the condition of wavefunction finite at r = 0 is given by

�ICW(r) = CJ0




√
2m(EICW − U ICW)

h̄2 r


 , (29)

where C is a constant. Now using (29) and the boundary condition (28), the energy spectrum
is obtained as

EICW
n = U ICW +

h̄2

2mR2
α2

n, (30)

where n ∈ N and the αn’s are the zeros of the Bessel function J0(x). Using the empirical
formula of interpolation for αn

αn = 3.115n + 2.405, (31)
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the substitution of (31) on (30) gives

EICW
n = U ICW +

2.89h̄2

mR2
+

4.85h̄2

mR2
n(n + 1.54)

= h̄ωICWeICW
n , (32)

where U ICW = −2.89h̄2/mR2, ωPCW = 4.85h̄/mR2 and eICW
n = n(n + 1.54), n ∈ N.

The normalized wavefunction is given by

�ICW
n (r) = 1

R
√

π

J0
(

αn

R
r
)

J1(αn)
≡ 〈r | n〉,

and the action of H ICW over the space FISW being

H ICW|n〉 = h̄ωICWeICW
n |n〉.

From the other side, for the case of the PCW, we consider a quantum particle that it is
confined to the interior of an infinite long cylinder of finite radius R but now the interior of the
cylinder has a potential of the form

V PCW(r) = W PCW +
UPCW

r2
, (33)

where UPCW and W PCW are constants that we can determine ulteriorly, and we assume that
both the wall of cylinder and the axis of the cylinder always obstruct that the particle resides
on them, because both the wall and the axis are maintained to infinite potential.

For a particle with mass m trapped inside the PCW of radius R, the associated Fock space
denoted by FPCW, the Hamiltonian operator H PCW, and the spectral equation are given by

FPCW = {|n〉 | n ∈ N}, (34)

H PCW = − h̄2

2m
∇2 + V PCW,

(35)
H PCW�PCW = EPCW�PCW,

where again the bi-dimensional Laplacian operator is written on cylindrical coordinates. The
substitution of (34) with (33) on (35) gives the following partial differential equation whose
solution determines the spectrum of H PCW

− h̄2

2m
∇2�PCW + V PCW�PCW = EPCW�PCW. (36)

Using again cylindrical coordinates and axial symmetry (36) is reduced to

∂2

∂r
�PCW(r) +

1

r

∂

∂r
�PCW(r) +

2m

h̄2

(
EPCW − W PCW − UPCW

r2

)
�PCW(r) = 0. (37)

The condition of trapping for the particle to the interior of the PCW but with a infinite potential
at r = 0, is introduced using the boundary conditions

�PCW(R) = 0, (38)

�PCW(0) = 0, (39)

then the solution of (37) with the condition of wavefunction finite at r = 0 is given by

�PCW(r) = CJ√
2mUPCW

h̄2




√
2m(EPCW − W PCW)

h̄2 r


 , (40)
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where again C is a constant. Now to obtain in (40) the condition (38), it is necessary that√
2mUPCW

h̄2 � 1, where we have chosen that

√
2mUPCW

h̄2 = 1. (41)

With (41), then (40) changes to

�PCW(r) = CJ1




√
2m(EPCW − W PCW)

h̄2 r


 . (42)

Using (42) and the boundary condition (39), the energy spectrum is obtained as

EPCW
n = W PCW +

h̄2

2mR2
α2

n, (43)

where n ∈ N and the αn’s are the zeros of the Bessel function J1(x). Using the empirical
formula of interpolation for αn

αn = 3.14n + 3.83, (44)

the substitution of (44) on (43) gives

EPCW
n = W PCW +

7.34h̄2

mR2
+

4.93h̄2

mR2
n(n + 2.43)

= h̄ωPCWePCW
n , (45)

where W PCW = −7.34h̄2/mR2, ωPCW = 4.93h̄/mR2 and ePCW
n = n(n + 2.43), n ∈ N.

Finally the normalized wavefunction is

�PCW
n (r) = 1

R
√

π

J1
(

αn

R
r
)

J0(αn)
≡ 〈r | n〉,

and the action of H PCW over the space FPCW is given by

H PCW|n〉 = h̄ωPCWeICW
n |n〉.

To avoid a very heavy notation, we define by the rest of this subsection a new variable
denoted by i that can take the values ICW and PCW, that is to say

i ∈ {ICW, PCW}.
With the aim to establish that the su(1, 1) algebra is the dynamical algebra associated

both with the ICW as to the PCW, we follow the procedure that was presented in [17] for
the case of ISW, and we introduce both a creation operator denoted by Ki

+ as a destruction
operator denoted by Ki

−, in this way that we can to rewrite the Hamiltonian Hi as

Hi = h̄ωi
(
Ki

+K
i
−
)
.

Besides of this, we introduce the operator

Ki
3 = [

Ki
−,Ki

+

]
,

in such form that the operators Ki
+,K

i
−, and Ki

3 satisfy the commutation relations (14b).
With the aim to satisfy the requirements, based on (32) and (45) we establish a

representation of the su(1, 1) algebra, which is given by

Ki
−|0〉 = 0, Ki

−|n〉 =
√

ei
n|n − 1〉,

Ki
+|n〉 =

√
ei
n+1|n + 1〉, Ki

3|n〉 = (
ei
n+1 − ei

n

) |n〉.
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From (32) and (45) we define

bICW = 1.54 and bPCW = 2.43,

and based on the representation that was introduced, we get a number operator of the form

Ni = (1/2)
(
Ki

3 − (bi + 1)
)
, Ni |n〉 = n|n〉.

The BGCS for the ICW and for the PCW are the states denoted by |z〉i that satisfy the
equation Ki

−|z〉i = z|z〉i and that have the form

|z〉i = |z|(bi)/2

√
Ibi (2|z|)

∞∑
n=0

zn√
n!(bi + n)!

|n〉,

being the associated probability density denoted by P i
n(z)

P i
n(z) = |z|bi

Ibi (2|z|)
|z|2n

n!(bi + n)!
.

Then, for the systems ISW/PCW, we have established that they satisfy the algebraic
structure of (14) with

f i(n) = ei
n hi(Ni) = 11,

and by the use of a procedure that is similar to the realized for the ISW, we obtain an adaptation
of the KHQA over the systems ICW/PCW where the halting criterion (6) is satisfied for the
values of z ∈ C such that

P i
0 = |z|bi

(bi)!Ibi (2|z|) < 1/2.

4.3. The Pöschl–Teller potentials

In this subsection it is showed that the Pöschl–Teller potentials (PTP) also satisfy the algebraic
structure given in (14) and then it is possible to adapt the KHQA for the case of the PTP. The
problem is to find both the energy spectrum as the wavefunctions for a particle of mass m that
is confined within an ISW, is generalized to the case when the particle is trapped by a potential
of the Pöschl–Teller kind [17]

V PTP
λ,κ (x) = 1

2
V PTP

0

(
λ(λ − 1)

cos2 x/2l
+

κ(κ − 1)

sin2 x/2l

)
,

where the parameters λ, κ > 1, the coupling constant is V0 > 0, and the PTP is defined inside
the domain 0 � x � πl. The corresponding Hamiltonian is given by

H PTP = i2 h̄2

2m

d2

dx2
+

h̄2

8ml2

(
λ(λ − 1)

cos2 x/2
+

κ(κ − 1)

sin2 x/2

)
− h̄2

8ml2
(λ + κ)2, (46)

where we chose by convenience V0 = h̄2/4ml2 [17]. The energy spectrum and the
corresponding eigenstates come from the solutions of the spectral equation

H PTPψPTP(x) = EPTPψPTP(x), (47)

with the boundary conditions

ψPTP(0) = ψPTP(πl) = 0. (48)



Quantum hypercomputation based on the dynamical algebra su(1, 1) 12553

Replacing (46) on (47) together with the boundary conditions (48), we obtain the normalized
wavefunctions and their corresponding eigenvalues [17]

�PTP
n (x) = [cn(λ, κ)]−1/2

(
cos

x

2l

)λ (
sin

x

2l

)κ

2F1

(
−n, n + λ + κ; κ +

1

2
; sin2 x

2a

)
≡ 〈x | η, n〉, EPTP

n = h̄ωPTPePTP
n (λ, κ),

where [cn(λ, κ)]−1/2 is the normalization factor that is given analytically when λ and κ are
positive integers, the function 2F1 is a particular case of the generalized hypergeometric
function, and

ωPTP = h̄

2ml2
, ePTP

n (λ, κ) = n(n + 2η − 1), η = λ + κ + 1

2
. (49)

The action of the Hamiltonian H PTP over the Fock space defined as

FPTP = {|η, n〉 | n ∈ N},
is given by

H PTP|η, n〉 = EPTP
n |η, n〉.

Due to the spectral structure of the PTP, its dynamical algebra is again su(1, 1) [17],
whose generators, denoted now by KPTP

+ ,KPTP
− and KPTP

3 , satisfy the commutation relations
(14b). Based on (49), the su(1, 1) algebra admits an infinite-dimensional UIR over the space
FPTP, which is given by

KPTP
− |η, 0〉 = 0,

KPTP
− |η, n〉 =

√
ePTP
n |η, n − 1〉 =

√
n(n + 2η − 1)|η, n − 1〉,

KPTP
+ |η, n〉 =

√
ePTP
n+1 |η, n + 1〉 =

√
(2η + n)(n + 1)|η, n + 1〉,

KPTP
3 |η, n〉 = (

ePTP
n+1 − ePTP

n

) |η, n〉 = (η + n)|η, n〉.

(50)

Based on the representation of the su(1, 1) algebra, the Hamiltonian H PTP is rewritten as

H PTP = h̄ωPTP
(
KPTP

+ KPTP
−

)
,

and we can construct a new number operator of the form

NPTP = (1/2)
(
KPTP

3 − η
)
, NPTP|η, n〉 = n|η, n〉.

The existence of the dynamical algebra permits the construction of generalized coherent
states to su(1, 1). The state |η, z〉PTP, z ∈ C, is chosen again as of the Barut–Girardello
type; and again is defined as KPTP

− |η, z〉PTP = z|η, z〉PTP. As is well known, this is a natural
generalization of the coherent state associated with the harmonic oscillator. The explicit
form is

|η, z〉PTP = (�(η) |z|−(η−1) Iη−1(2 |z|))−1/2
∞∑

n=0

zn

√
n!(η)n

|η/2, n〉,

where (η)n is the Pochammer’s symbol, defined as (η)n = η(η + 1) · · · (η + n − 1); and Iη−1

is again the modified Bessel function of the first class. Similarly to the previous systems,
we have a probability density associated with the coherent state that is immediately extracted
from the explicit form of the coherent state.

We have established then that the PTP also satisfy the algebraic structure given by (14)
with characteristic functions of the form

f PTP(n) = ePTP
n (λ, κ) hPTP(NPTP) = 11,

and by a procedure that is similar to the realized for the cases of ISW, ICW and PCW, we
obtain an adaptation of the KHQA for the case of the PTP where it is possible to choose the
values of the parameters in such a way that halting criterion (6) is satisfied.
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4.4. The density-dependent Holstein–Primakoff system

In this subsection, it is shown that the density-dependent Holstein–Primakoff (HP) system of
quantum optics also satisfies the algebraic structure of (14). The HP realization of the Lie
algebra su(1, 1) is constructed from the generators, denoted now by KHP

+ ,KHP
− and KHP

3 , that
satisfy the commutation relations (14b) [15]. The HP realization explicitly reads

KHP
+ = a+

√
NSHO + 2η, KHP

− =
√

NSHO + 2ηa, KHP
3 = NSHO + η,

where a+, a and NSHO are respectively the creation, annihilation and number operator of a
single-mode electromagnetic field and which are given by (1b) and (1f ), and the parameter
denoted by η is the label of this representation.

The action of the generators over the Fock space is of the form

KHP
− |0〉 = 0, KHP

− |n〉 =
√

n(n + 2η − 1)|n − 1〉,
KHP

+ |n〉 =
√

(2η + n)(n + 1)|n + 1〉, KHP
3 |n〉 = (η + n)|n〉,

which is very similar to the representation (50).
The principal difference between HP and the other systems (ISW, ICW, PCW and PTP) is

that to the HP is more natural the Perelomov coherent states that the BGCS. Here we consider
the Perelomov coherent state as a case of nonlinear coherent states. Then, the equation that
defines the nonlinear coherent state that naturally arises for the HP system is [15]

1

N + 2k
KHP

− |z〉HP = z|z〉HP, (51)

where the explicit solution of (51) is

|z〉HP = (1 − |z|2)M/2
∞∑

n=0

(
M + n − 1

n

)1/2

zn|n〉.

Then, we have established that the HP also satisfies the algebraic structure (14) with
characteristic functions of the form f HP(n) = n(2k + n − 1) and hHP(NHP) = 1/(N + 2k)

where NHP = NSHO. It is possible then to adapt the KHQA for the case of the HP with a
clearly established halting criterion.

4.5. Laguerre oscillator

Finally, in this subsection, we show that the named Laguerre oscillator (LG) also satisfies the
algebraic structure that is given by (14) and then it is possible with such a system to adapt the
KHQA. The relevant formalism is the following.

We consider a Hilbert space whose elements are generalized Laguerre functions. By
constructing, raising and lowering operators acting on these states, one can obtain an explicit
realization of the Hamiltonian, which is defined to be diagonal in this Hilbert space. The
obtained system, as defined by the Hamiltonian, is called an Laguerre oscillator.

Now, as is well known, the Laguerre polynomials are defined as [20]

Lα
n(x) = 1

n!
exx−α dn

dxn
(e−xxα+n),

and the generalized Laguerre functions are of the form

ψα
n (x) =

√
n!xα+1 e−x

(n + α)!
Lα

n(x).

Now, we can define the raising operator KLO
+ and the lowering operator KLO

− from the
generalized Laguerre functions
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KLO
+ ψα

n (x) =
[
−x

d

dx
− 2n + α + 1 − x

2

]
ψα

n (x)

= −
√

(n + 1)(n + α + 1)ψα
n+1(x),

KLO
− ψα

n (x) =
[
x

d

dx
− 2n + α + 1 − x

2

]
ψα

n (x)

= −
√

n(n + α)ψα
n−1(x).

The generalized Laguerre functions are the base of a Hilbert space that has the structure of
Fock space and as a consequence

ψα
n (x) = 1√

n!(α + 1)n

(
KLO

+

)n
ψα

0 (x).

The commutator between the ladder operators of the Laguerre oscillator is given by[
KLO

− ,KLO
+

]
ψα

n (x) = (2n + α + 1)ψα
n (x),

and then, we can define the operator KLO
3 , as

KLO
3 ψα

n (x) = 1
2 (2n + α + 1)ψα

n (x).

The commutation relations for the three operators of the Laguerre oscillator are[
KLO

− ,KLO
+

] = 2KLO
3 ,

[
KLO

3 ,KLO
+

] = KLO
+ ,

[
KLO

3 ,KLO
−

] = −KLO
− ,

and we conclude that the Laguerre oscillator realizes a infinite-dimensional UIR of su(1, 1).
The Hamiltonian for the Laguerre oscillator is

H LOψα
n (x) = KLO

+ KLO
− ψα

n (x) = enψ
α
n (x) = n(n + α)ψα

n (x),

and the BGCS are defined as is usual, it is to say

KLO
− |z〉LO = z|z〉LO,

where the solution of (4.5) is again the well-known form

|z〉LO = |z|α/2

√
Iα(2|z|)

∞∑
n=0

zn

√
n!(n + α)!

|n〉,

where

|n〉 = ψα
n (x).

Then, we have proved that the Laguerre oscillator also satisfies the algebraic structure
of (14) with characteristic functions of the form f (n) = n(n + α) and h(n) = 1. All this
indicates that it is possible to adapt the KHQA to the case of the Laguerre oscillator.

We can observe that the Laguerre oscillator contains as particular cases the systems ISW,
ICW, PCW and PTP for different values of the parameter α. From the other side, it may be
possible to have a realization of the Laguerre oscillator and its generalizations within the field
of quantum optics.

5. Conclusions

• We have identified from an algebraic point of view the conditions to make adaptations of
KHQA: a non-compact Lie algebra of low dimension that admits infinite-dimensional
irreducible representations with naturally defined ladder operators and generalized
coherent states. Based on this result, we made an adaptation of KHQA over the algebra
su(1, 1) because this algebra satisfies these conditions and because this algebra is the
dynamical algebra associated with many quantum systems.
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• Hilbert’s tenth problem is a semi-computable problem by a TM in the sense that if the
Diophantine equation (2) has a solution, an exhaustive search on k-tuplas of non-negative
integers would find it, but if (2) does not have a solution this search would not finish.
In this sense, it is possible to be interpreted ingenuously that KHQA and our adaptation
over the algebra su(1, 1) carry out an infinite search (in a finite time) on every k-tuplas
of non-negative integers. However, KHQA and our adaptation do not make an infinite
search, because although Hilbert’s tenth problem is TM incomputable, this is a finitely
refutable problem [35]. That is to say, it is only necessary to make the search on a finite
set of non-negative integers, to determine if (2) has a solution or not, although of course,
this finite set is TM incomputable.

• A very common misunderstanding in the technical literature is not to make distinctions
between the terms ‘quantum computation’ and ‘standard quantum computation’ (e.g.
[36, 37]). Due to this misunderstanding and due to equivalence in computability
terms, between the standard quantum computation and TM computability established by
David Deutsch [38]4, the hypercomputation possibility based on quantum computation is
rejected. Nevertheless, this situation is erroneous as is demonstrated by the theoretical
existence of KHQA and our adaptation over the algebra su(1, 1).

• Another common misunderstanding is not to make a distinction between quantum
adiabatic computation on finite- and infinite-dimensional Hilbert spaces. For example,
there is a recent proof that quantum adiabatic computation is equivalent to standard
quantum computation [40]; however, this proof generates no contradiction with KHQA
or with our adaptation over the algebra su(1, 1), because such a proof of equivalence is
only valid for quantum adiabatic computation on finite-dimensional Hilbert spaces.

• Based on our adaptation of KHQA over the algebra su(1, 1), we had presented a plausible
realization within the field of condensed matter physics and quantum optics. Although
Kieu has refuted successfully some critics of his algorithm (see section Notes addes of
[12]), there is an important observation with respect to its possible implementation that
has not been solved yet, in Kieu’s words [13, p 180]:

. . . there have been some concerns (this pointed has been raised on separate
occasions by Martin Davis (2003), Stephen van Enk (2004) and Andrew Hodges
(2004)) that infinite precision is still required in physically setting up the various
integers parameters in the time-dependent quantum Hamiltonians. While the
issue deserves further investigations as surely any systematic errors in the
Hamiltonians would be fatal, we still are not convinced that such integer
parameters cannot be satisfactorily set up. In particular, we would like to
understand the effects of statistical (as opposed to systematic) errors on the
statistical behaviour of the spectrum of our adiabatic Hamiltonians.

This observation is valid for our plausible realization too; however, we agree it is necessary
to research further to establish if it is possible or not to implement KHQA or our adaptation
over the algebra su(1, 1).
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Appendix

In this appendix, we present the procedure to obtain the explicit form of the coherent states
denoted by |z〉S, which is given by (14h) and which was used to obtain the explicit forms for
all particular coherent states, both of the Barut–Girardello as well as the Perelomov type, used
in this paper. Since the coherent state |z〉S belongs to the Fock space FS (14a), we can write
the coherent state as an linear combination

|z〉S =
∞∑

n=0

Cn(z)|n〉. (A.1)

The substitution of (A.1) on (14g) and using (14c) and (14f ) generates the following recurrence
equation for the coefficients Cn(z)

Cn+1(z)h
S(n)

√
f S(n + 1) = zCn(z). (A.2)

The solution of (A.2) is

Cn(z) = C0(z)
zn( ∏n−1

j=0 hS(j)
)
(
√

f S(n)!)
. (A.3)

To obtain the coefficient C0(z) we apply the condition of normalization of the coherent state

S〈z | z〉S = 1 =
∞∑

n=0

C0(z)
2 |z|2n( ∏n−1

j=0 hS(j)
)2

(f S(n)!)
. (A.4)

From (A.4) we obtain that

C0(z) =
( ∞∑

m=0

|z|2m(∏m−1
j=0 hS(j)

)2
(f S(m)!)

)−1/2

. (A.5)

Finally, the substitution of (A.5) on (A.3) and then on (A.1) gives the following explicit form
for the su(1, 1) nonlinear coherent states, which is given by (14h).
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